Education

The University of Texas at Austin , PhD Computer Science Focus in Deep Reinforcement Learning and Robotics	2022 - Present GPA: 3.95
University of Maryland , M.S <i>Aerospace Engineering</i> Focus in Control Theory and Dynamical Systems	2015 - 2017 GPA: 3.97
University of Maryland , B.S Aerospace Engineering (Honors Program)	2010 - 2015 GPA: 4.00

Research Projects

Deployment and Sample Efficient Iterated Offline Reinforcement Learning via Synthetic UpsamplingAustin, TXResearch Project with Prof. David Fridovich-Keil2024

- Investigated transforming off-policy deep reinforcement learning into a sample-efficient iterated offline RL framework.
- Developed Jax implementations of Synther and MBPO, reducing training time from days to hours. Code.
- Leveraged these fast generative and rollout models to explore mitigation of overestimation and overfitting in high update-to-data ratio RL training.
- Translating Open-loop Trajectory Optimization into Closed-Loop Policy OptimizationAustin, TXResearch Project with Prof. David Fridovich-Keil2023
 - Developed a novel policy optimization algorithm (D4PO) which combined the structure of iLQR/DDP with deterministic policy gradients.
 - Hypothesized and validated that incorporating iLQR/DDP feedback gains and value functions improves sample efficiency and reduces sensitivity to exploding gradients in reinforcement learning.
 - Demonstrated strong performance in contact-free environments, while highlighting challenges with managing large gradients due to contact dynamics.

Time Symmetric Data for RL, Austin, TX

Research Project with Profs. David Fridovich-Keil and Amy Zhang

- Investigated the utility of time reversal symmetry in reinforcement learning. Code. Paper.
- Developed a data augmentation technique (TSDA) that leverages time symmetry across a range of RL problems.
- Demonstrated that TSDA can provide SOTA sample efficiency in time symmetric and asymmetric environments.

Professional Experience

Autonomy Aerospace Engineer, Johns Hopkins University Applied Physics Lab (JHU/APL)2017 - 2	2022
---	------

- Efforts culminated in first ever combat tests between AI and human-piloted F-16s in 2023
- JHU/APL's Air Combat Evolution (ACE) deep reinforcement learning (DRL) lead for sub and full-scale aircraft
- Guidance, control, and aerospace simulation subject matter expert (SME) for JHU/APL ADT and ACE teams

Technical Skills

Languages: Python, C++, Cython, Bash, CUDA Libraries/Software: JAX, Pytorch, Flax, Brax, Git, LATEX

Selected Publications

- 1. Stealing That Free Lunch The MDP Diversity Problem in Model-Based Reinforcement Learning **Brett Barkley**, David Fridovich-Keil | In preparation for ICML 2025
- 2. An Investigation of Time Reversal Symmetry in Reinforcement Learning Brett Barkley, Amy Zhang, David Fridovich-Keil | L4DC 2024

Austin, TX 2023